Automatic lameness detection in dairy cows based on machine vision
Abstract
Keywords: dairy cow, lameness detection, machine vision, object detection, deep learning
DOI: 10.25165/j.ijabe.20231603.8097
Citation: Jia Z W, Yang X H, Wang Z, Yu R R, Wang R B. Automatic lameness detection in dairy cows based on machine vision. Int J Agric & Biol Eng, 2023; 16(3): 217–224.
Keywords
Full Text:
PDFReferences
Han S Q, Zhang J, Cheng G D, Peng Y Q, Zhang J H, Wu J Z. Current state and challenges of automatic lameness detection in dairy cattle. Smart Agriculture, 2020; 2(3): 21-36. (in Chinese)
Kang X, Zhang X D, Liu G. A review: Development of computer vision-based lameness detection for dairy cows and discussion of the practical applications. Sensors, 2021; 21(3): 753. doi: 10.3390/s21030753.
Novotna I, Langova L, Havlicek Z. Risk factors and detection of lameness using infrared thermography in dairy cows - A review. Annals of Animal Science, 2019; 19(3): 563-578.
Sprecher D J, Hostetler D E, Kaneene J B. A lameness scoring system that uses posture and gait to predict dairy cattle reproductive performance. Theriogenology, 1997; 47(6): 1179-1187. doi: 10.1016/S0093-691X(97)00098-8.
Thomsen P T, Munksgaard L, Tøgersen F A. Evaluation of a lameness scoring system for dairy cows. Journal of Dairy Science, 2008; 91(1): 119-126.
Van Nuffel A, Zwertvaegher I, Van Weyenberg S, Pastell M, Thorup V M, Bahr C, et al. Lameness detection in dairy cows: Part 2. Use of sensors to automatically register changes in locomotion or behavior. Animals, 2015; 5(3): 861-885.
Chapinal N, de Passillé A M, Pastell M, Hanninen L, Munksgaard L, Rushen J. Measurement of acceleration while walking as an automated method for gait assessment in dairy cattle. Journal of Dairy Science, 2011; 94(6): 2895-2901.
Bahr C, Leroy T, Song X Y, Vranken E, Maertens W, Vangeyte J, et al. Automatic detection of lameness in dairy cattle - Analyzing image parameters related to lameness. Livestock Environment VIII, Iguassu Falls: ASABE, 2008; paper No. 701P0408. doi: 10.13031/2013.25608.
Song H B, Jiang B, Wu Q, Li T, He D J. Detection of dairy cow lameness based on fitting line slope feature of head and neck outline. Transactions of the CSAE, 2018; 34(15): 190-199. (in Chinese)
Zhao K, Bewley J M, He D, Jin X. Automatic lameness detection in dairy cattle based on leg swing analysis with an image processing technique. Computers and Electronics in Agriculture, 2018; 148: 226-236.
Van Hertem T, Viazzi S, Steensels M, Maltz E, Antler A, Alchanatis V, et al. Automatic lameness detection based on consecutive 3D-video recordings. Biosystems Engineering, 2014; 119: 108-116.
Viazzi S, Bahr C, Schlageter-Tello A, Van Hertem T, Romanini C E B, Pluk A, et al. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle. Journal of Dairy Science, 2013; 96(1): 257-266. doi: 10.3168/jds.2012-5806.
Poursaberi C, Bahr C, Pluk A, Van Nuffel A, Berckmans D. Real-time automatic lameness detection based on back posture extraction in dairy cattle: Shape analysis of cow with image processing techniques. Computers and Electronics in Agriculture, 2010; 74(1): 110-119.
Zhang H Y, Cisse M, Dauphin Y N, Lopez-Paz D. Mixup: Beyond empirical risk minimization. arXiv Preprint, 2018. arXiv: 1710.09412.
Devries T, Taylor G W. Improved regularization of convolutional neural networks with cutout. arXiv Preprint, 2017. arXiv:1708.04552.
Yun S, Han D, Chun S, Oh S J, Yoo Y, Choe J. CutMix: Regularization strategy to train strong classifiers with localizable features. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul: IEEE, 2019; pp.6022-6031. doi: 10.1109/ICCV.2019.00612.
Buslaev A, Iglovikov V I, Khvedchenya E, Parinov A, Druzhinin M, Kalinin A A. Albumentations: Fast and flexible image augmentations. Information, 2020; 11(2): 125. doi:10.3390/info11020125.
Han K, Wang Y H, Tian Q, Guo J Y, Xu C J, Xu C. GhostNet: More features from cheap operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020; pp.1577-1586. doi: 10.1109/CVPR42600.2020.00165.
Bochkovskiy A, Wang C Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv Preprint, 2020. arXiv:2004.10934.
Jiang B R, Luo R X, Mao J Y, Xiao T T, Jiang Y N. Acquisition of localization confidence for accurate object detection. arXiv Preprint, 2018. arXiv:1807.11590.
Barnich O, Van Droogenbroeck M. ViBe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing, 2011; 20(6): 1709-1724. doi:10.1109/TIP.2010.2101613.
Dudi B, Rajesh V. Optimized threshold-based convolutional neural network for plant leaf classification: a challenge towards untrained data. Journal of Combinatorial Optimization, 2022; 43: 312-349.
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C Y, et al. SSD: Single Shot Multibox Detector. Computer Vision – ECCV 2016. 2016; 9905: 21-37. doi: 10.1007/978-3-319-10578-9_23.
Jiang Z C, Zhao L Q, Li S Y, Jia Y F. Real-time object detection method based on improved yolov4-tiny. arXiv Preprint, 2020. arXiv.2011.04244.
Ren S Q, He K M, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017; 39(6): 1137-1149.
Tan M X, Pang R M, Le Q C. EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle: IEEE, 2020; pp.10778-10787. doi: 10.1109/CVPR42600.2020.01079.
Farnebck G. Two-grame motion estimation based on polynomial expansion. 13th Scandinavian Conference on Image Analysis (SCIA 2003), Springer-Verlag, 2003; pp.363-370. doi: 10.1007/3-540-45103-X_50.
Muro S, Yoshida I, Hashimoto M, Takahashi K. Moving-object detection and tracking by scanning LiDAR mounted on motorcycle based on dynamic background subtraction. Artificial Life and Robotics, 2021; 26: 412-422.
Wang, Y, Tan Y H, Tian J W. Video segmentation algorithm with Gaussian mixture model and shadow removal. Opto-Electronic Engineering, 2008; 3: 21-25.
Tamara F, Nicolas R, Xu W K, Arthur G. Kernelized stein discrepancy tests of goodness-of-fit for time-to-event data. arXiv Preprint, 2020. arXiv:2008.08397v2.
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.