Detection of maize leaf diseases using improved MobileNet V3-small
Abstract
Keywords: maize leaf disease, image recognition, model compression, MobileNetV3-small
DOI: 10.25165/j.ijabe.20231603.7799
Citation: Gao A, Geng A J, Song Y P, Ren L L, Zhang Y, Han X. Detection of maize leaf diseases using improved MobileNet V3-small. Int J Agric & Biol Eng, 2023; 16(3): 225–232.
Keywords
Full Text:
PDFReferences
Han T F, Li Y Z, Qu X L, Ma C B, Wang H Y, Huang J, et al. Spatio-temporal evolutions and driving factors of wheat and maize yields in China. Transactions of the CSAE, 2022; 38(1): 100-108. (in Chinese)
Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2012; 60(6): 84-90.
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint, 2014. arXiv: 1409.1556.
He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2016; pp.770-778. doi: 10.1109/CVPR.2016.90.
Howard A, Sandler M, Chen B, Wang W J, Chen L-C, Tan M X. Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019; pp.1314-1324. doi: 10.1109/ICCV.2019.00140.
Christian S, Vincent V, Sergey I, Jonathon S, Zbigniew W. Rethinking the inception architecture for computer vision. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas: IEEE, 2015; pp.2818-2826. doi: 10.1109/CVPR.2016.308.
Ying B Y, Xu Y C, Zhang S, Shi Y G, Liu L. Weed detection in images of carrot fields based on improved YOLO v4. Traitement du Signal, 2021; 38(2): 341-348.
Tarek H, Aly H, Eisa S, Abul-Soud M. Optimized deep learning algorithms for tomato leaf disease detection with hardware deployment. Electronics, 2022; 11(1): 140. doi: 10.3390/electronics11010140.
Tang W Q, Hu J C, Wang Q H. High-throughput online visual detection method of cracked preserved eggs based on deep learning. Applied Sciences, 2022; 12(3): 952. doi: 10.3390/app12030952.
Priyadharshini R A, Arivazhagan S, Arun M, Mirnalini A. Maize leaf disease classification using deep convolutional neural networks. Neural Computing and Applications, 2019; 31: 8887–8895.
Lyu M J, Zhou G X, He M F, Chen A B, Zhang W Z, Hu Y H. Maize leaf disease identification based on feature enhancement and DMS-robust alexnet. IEEE Access, 2020; 8: 57952-57966.
Zeng W H, Li H D, Hu G S, Liang D. Identification of maize leaf diseases by using the SKPSNet-50 convolutional neural network model. Sustainable Computing: Informatics and Systems, 2022; 35: 100695. doi: 10.1016/j.suscom.2022.100695.
Cen H Y, Zhu Y M, Sun D W, Zhai L, Wan L A, Ma Z H, et al. Current status and future perspective of the application of deep learning in plant phenotype research. Transactions of the CSAE, 2020; 36(9): 1-16. (in Chinese)
Fan X P, Zhou J P, Xu Y, Peng X. Corn disease recognition under complicated background based on improved convolutional neural network. Transactions of the CSAM, 2021; 52(3): 210-217. (in Chinese)
Sun H, Li S, Li M Z, Liu H J, Qiao L, Zhang Y. Research progress of image sensing and deep learning in agriculture. Transactions of the CSAM, 2020; 51(5): 1-17. (in Chinese)
Hu J, Shen L, Albanie S, Sun G, Wu E. Squeeze-and-Excitation Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020; 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372.
Xu Z N, Wang J K, Hu Y J, Zhang Z C, Zhao X D, Yang L L, et al. Potato disease recognition based on MobileNetV3. Jiangsu Agricultural Sciences, 2022; 50(10): 176-182. (in Chinese)
Fang J L, Hu Y H, Dai B S, Wu Z D. Detection of group-housed pigs based on improved CenterNet model. Transactions of the CSAE, 2021; 37(16): 136-144. (in Chinese)
Xu J H, Shao M Y, Wang Y C, Han W T. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network. Transactions of the CSAM, 2020; 51(2): 230-236, 253. (in Chinese)
Wu Q L, Zheng J, Wu K M. Research and application of crop pest monitoring and early warning technology in China. Frontiers of Agricultural Science and Engineering, 2022; 9(1): 19-36.
Li Y H, Wang N N, Zhu M R, Yang X, Gao X B. Recent advances in neural architecture search: A survey. Journal of Software, 2022; 33(1): 129-149.
Sandler M, Howard A, Zhu M. MobileNetV2: Inverted residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City: IEEE, 2018; pp.4510-4520. doi: 10.1109/CVPR.2018.00474.
Chollet F. Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu: IEEE, 2017; pp.1800-1807. doi: 10.1109/CVPR.2017.195.
Ferrag M A, Shuo L, Friha O, Yang X. Cyber security intrusion detection for agriculture 4.0: Machine learning-based solutions, datasets, and future directions. IEEE/CAA Journal of Automatica Sinica, 2022; 9(3): 407-436.
Zhang Z K, Pang W G, Xie W J, Liu M S, Wang Y. Deep learning for real-time applications: A survey. Journal of Software, 2020; 31(9): 2654-2677. (in Chinese)
Copyright (c) 2023 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.