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Abstract: The present study investigated the effects of cow manure ratios mixed with maize stover, rice straw, and wheat stalk 

at 3, 2, 1 (total solid based, TS-based), respectively, on methane production and microbial community structure during the 

anaerobic co-digestion process.  Results showed cow manure co-digested with maize stover, wheat stalk, and rice straw at 

ratios of 2, 1, and 3 had the highest cumulative methane yields (272.99, 153.22 167.73 mL/g volatile solid (VS), respectively) 

and better stability (e.g. pH, volatile fatty acids (VFAs) and their component).  The main microbe evolution had a similar trend 

which was Petrimonas and Methanosaeta in the early digestion process (Days 0-7) and then evolved into Longilinea, 

Ruminofilibacter, and Methanosarcina with the progress of digestion, but the relative abundance of these microbes in each 

reactor was different.  It was worth noting that Caldicoprobacter in cow manure to maize stover ratio of 2, and to rice straw 

ratio of three reactors had a relatively higher proportion than reactor of cow manure to wheat stalk ratio of 1, and 

Hydrogenophaga was the specific bacterium in cow manure to wheat stalk ratio of 1 reactor.  In addition, Petrimonas showed 

positive relationship with VFAs and Longilinea was the opposite.  Methanosaeta and Methanobacterium contributed the most 

during the peak period of methane production in cow manure and maize stover co-digested reactor, and showed positive 

relationship with acetic acid.  However, Methanosarcina and Methanospirillum made a great contribution during the peak 

period of methane production in cow manure co-digested with wheat stalk and rice straw reactors.  These findings could 

provide further information on the application of cow manure co-digested with crop wastes. 
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1  Introduction

 

China is an agricultural country that has extremely rich crop 

wastes and livestock manure resources[1].  Approximately 900 

million t of crop straw among which maize stover, rice straw, and 

wheat stalk were the main crop wastes produced in 2017, and only 

approximately 30% of this amount was used[2].  Cow manure (CM) 

holds a great share standing for more than half of the total amount 

of manure currently and will further reach around 75% in one 

decade[3].  CM may contain traces of antibiotics, heavy metals, 

and pathogens, which not only affect the plants through salt 
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toxicity through direct application but also humans via the food 

chain of accumulated toxins[4].  Hence, the inappropriate disposal 

of these wastes has been identified as an important reason for 

environmental problems on a global (climate change, ozone 

depletion) and regional (soil acidification, aquatic eutrophication, 

particulate matter formation) scale[5].

  Different from the 

traditional treatment method, anaerobic digestion (AD) is a 

cost-effective process for treating biowastes because it has many 

advantages, such as reduction of greenhouse gas emissions, 

production of renewable energy, and production of biofertilizers[6,7].  

Anaerobic digestion (AD) acts as a viable technology to extract the 
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residual value of agricultural wastes (i.e., crop residues and manure) 

generated by farm sectors[8]. 

Monodigestion often suffers some drawbacks such as unstable 

processes[9,10] and low gas production rate[11,12] furthermore 

undermining its associated environmental benefits and economic 

revenue[13,14].  Therefore, anaerobic co-digestion (AcoD) has 

drawn great attention in recent years as it can supply a more 

balanced nutrient media for the growth of microorganisms[15,16]; 

thereby, the biological process benefits from the optimized 

microbial community structure and improved metabolic 

intensity[17,18].  In addition, under AcoD strategies, some inhibitors, 

such as ammonia nitrogen and longchain fatty acids (LCFA), are 

diluted to a secure level below threshold points, thereby their toxic 

effects on methanogens are reduced or totally eliminated[19,20].  

Materials with a high carbon-to-nitrogen (C/N) ratio are usually 

mixed with those having a low C/N ratio so that the average ratio 

could be brought to a desirable level[21].  Manure has a low C/N 

ratio, which increases the likelihood of process failure or inhibition 

when used as a single feedstock[22].  In addition, manure has a 

high moisture content which acts as a solvent for dry biomass 

making it useful as a base substrate for co-digestion[23].  Mixing 

manure with other high C/N and dry biomass wastes (i.e., crop 

straw) in a certain proportion can adjust the C/N of raw materials 

and balance the nutrients, so as to increase the methane yields and 

reduce the start-up time[24,25].  Many studies were about the 

co-digestion of manure and crop residues[26-29].  In addition, 

anaerobic co-digestion of manure with straw has been shown to 

promote methanogenesis making the methanogens community have 

strong ecological functions and vigorous methanogens[30-32].  Also, 

many researches were about improving methane production by 

pretreatment or adding some additive. 

However, there are few studies about the comparison of the 

effects of CM adding ratios on methane production during 

anaerobic co-digestion with maize stover, wheat straw, and rice 

straw, respectively.  Though the three straws are mainly 

composed of cellulose, lignin, and hemicellulose, there are still 

some different aspects due to their distinction in growth habits.  

Hence, it was very essential to investigate the suitable CM ratios in 

each digestion system for their further application in biogas plants.  

Moreover, the characteristics and the comparison of 

microorganisms' evolution in different CM-adding ratios 

co-digestion systems were not investigated.  Therefore, it was 

very essential to clarify how the CM adding ratios promote 

methanogenesis by affecting the methanogens community, and this 

could push its application in biogas engineering.  Therefore, the 

purposes of this study were to 1) Analyze the methane yield 

characteristics of the anaerobic reaction system under different CM 

ratios and comprehensively evaluate the influence of cow manure 

adding ratios on the stability of each mixed digestion system; 2) 

Clarify the evolution of microbial characteristics of different CM 

ratio systems during the co-digestion process. 

2  Materials and methods 

2.1  Feedstocks and inoculum 

Cow manure (CM), maize stover (CS), wheat stalk (WS), and 

rice straw (RS) were used as the co-substrates for the anaerobic 

digestion, respectively.  CM was obtained from a farm at Hebei 

Agricultural University of China.  CS, WS, and RS were obtained 

from a local farm (Lianyungang, Jiangsu, China).  The CS, WS, 

and RS were dried naturally after being collected and then crushed 

and sifted through a 30-mesh sieve.  The inoculum was obtained 

from a biogas station that operates at a mesophilic condition by 

using CM and CS as co-substrates (Dingzhou, Hebei, China).  The 

key physicochemical properties of these feedstocks and inoculum 

were summarized in Table 1. 
 

Table 1  Characteristics of raw materials and inoculum 

Parameter CM CS RS WS Inoculum 

Total solids (TS)/% 
16.61± 

0.01 
91.67± 

0.00 
94.22± 

0.02 
93.31± 

0.01 
4.43± 
0.03 

Volatile solids (VS)/% 
13.29± 

0.02 

73.34± 

0.01 

75.38± 

0.01 

74.65± 

0.03 

3.54± 

0.03 

Total Carbon (TC)/%
a
 

38.47± 

3.09 

43.65± 

0.16 

43.54± 

0.25 

44.02± 

0.66 
ND 

Total Nitrogen (TN)/%
a
 

5.15± 

0.66 

1.42± 

0.12 

1.03± 

0.30 

0.88± 

0.41 
ND 

Carbon to nitrogen (C/N)  

ratio
a
 

7.47± 

1.57 

30.74± 

2.51 

42.77± 

1.63 

50.02± 

0.94 
ND 

pH 7.29±0.17 ND ND ND 7.51±0.28 

NH4
+
-N/mg·L

−1 
29.81±5.98 ND ND ND ND 

Note: CM: Cow manure; CS: Maize stover; RS: Rice straw; WS: Wheat stalk; 

ND: Not determined.  
a 
TS-based, others without the mark are wet weight-based. 

The same as below. 
 

2.2  Reactor setups 

In this study, the CMs were completely mixed with each crop 

waste (i.e., CS, WS, and RS) at ratios of 3:1, 2:1, and 1:1 (total 

solid based, TS-based) and then thoroughly mixed with inoculum 

to obtain a TS of 10% at feedstock to inoculum (F/I) ratios of 2 (TS 

based), respectively.  In this study, a 650 g mixture was added to a 

series of 1-L anaerobic reactors that had been flushed with N2 for  

5 min to create an anaerobic environment prior to the beginning of 

each digestion experiment.  Inoculum without any feedstock was 

used as a control.  All treatments were conducted in triplicate.  

Reactors were placed in an incubator with a temperature constant 

of 35°C for 45 d.  Biogas generated from each reactor was 

collected using Tedlar gas bags on a daily basis for production and 

composition analysis.  In this study, the experimental group of 

CM co-digested with CS at a ratio of 3:1, 2:1, and 1:1 was 

expressed as CSCMT3, CSCMT2, and CSCMT1, respectively.  

Similarly, treatments of CM co-digested with WS and RS at a ratio 

of 3:1, 2:1, and 1:1 was WSCMT3, WSCMT2, WSCMT1, RSCMT3, 

RSCMT2, and RSCMT1, respectively. 

2.3  Analytical methods 

The methane content and production were measured by a 

portable biogas meter (BIOGAS5000, Geotech, UK).  The 

physicochemical properties of samples collected from the reactors 

during the digestion process were analyzed (i.e., total solid content 

(TS), volatile solid content (VS), total nitrogen (TN), total carbon 

(TC), pH, NH4
+-N content, and volatile fatty acids (VFAs) content).  

Samples without any treatment were used for the measurement of 

the TS, VS, TN, and TC.  TS and VS contents were analyzed 

based on standard methods.  TN and TC contents were measured 

by the elemental analyzer (Hanau, Germany).  Samples were 

centrifuged at 5000 r/min for 10 min to separate the liquid from the 

solid.  The liquid was used to determine the pH, NH4
+-N content, 

and VFA contents.  The pH of samples was determined with a pH 

meter.  The VFA contents (i.e., formic, acetic, propionic, and 

butyric acids) were analyzed using a Liquid Chromatograph with a 

capillary column (HPX-87H 300.0 mm×7.8 mm, Aminex, 

Shimadzu, Japan,) and detector (SPD-S20A, Shimadzu, Japan).  

The column temperature was 40°C and the column pressure was 

1.3 MPa.  The injection temperature was 90°C, and the injection 

volume was 10 μL.  The flow rate of the mobile phase was    

0.6 mL/min with an absorption wavelength of 205 nm, and the 



September, 2022        Hao J J, et al.  Effects of cow manure ratios on methane production and microbial community evolution        Vol. 15 No. 5   221 

sample measurement time was 30 min.  Dilutions of the 

corresponding compounds were injected as standards to quantify 

the compounds and confirm the peak positions.  The content of 

NH4
+-N was measured by a flow injection analyzer (AA3, SEAL, 

Germany). 

2.4  Model application 

The experimental data were validated using a modified 

Gompertz model (GM) and a First-order (FO) model.  Methane 

yield was calculated, and the cumulative methane yield was 

simulated with the modified Gompertz model shown in Equation 

(1), which was developed by Lay et al.[33] 

max ( )
exp exp 1

e R t
M P

P

   
     

  
        (1) 

where, M is the cumulative methane yields, mL/g VS; P is the 

maximum methane potential, mL/g VS; Rmax is the maximum 

methane yields rate, mL/d; e is Euler's number (≈2.71828); λ is the 

lag phase, d; t is the time, d. 

Kh reflects the rate of the hydrolysis stage and can be 

calculated using the net cumulative biogas yield by applying 

Equation (2)[34,35]. 

ln h

P M
K t

P

 
  

 
              (2) 

The non-linear fit of methane yields based on Equation (1) and 

the linear regression of ln
P M

P

 
 
 

 against time (t) based on 

Equation (2) were performed using Origin 8.6 and SPSS 19.0 

software, respectively.  All data are expressed as the mean  ± 

standard deviation, and the threshold for significance is p<0.05. 

2.5  Microbiological analysis 

The functional microorganisms contributing to methane 

production and the microbial community evolution during different 

CM ratios and crop waste co-digestion processes were analyzed by 

using high-throughput sequencing.  Microbial community 

structure of pure inoculum and treatments with the highest methane 

yield at the different co-digestion reactors of CM with crop wastes 

(i.e., CSCMT2 (2:1), WSCMT1 (1:1), RSCMT3 (3:1) were analyzed 

on Days 1, 3, 7, 15, 30, and 45.  The samples of treatments on 

Days 1, 3, and 7 were chosen because of their notable difference in 

daily and cumulative methane yields which can reflect the 

functional microbe contributing to the methane production in the 

acidification and hydrolysis stage.  Similarly, the samples on Days 

15 and 30 were selected for their stable methane contents which 

can represent the main microorganisms in the methanogenic stage.  

The samples on Day 45 indicated the microbial community 

structure at end of the digestion process.  Among them, bacteria 

were shown as B.  That is to say, the bacterial community 

structure on Days 1, 3, 7, 15, 30, and 45 were expressed as 1B, 3B, 

7B, 15B, 30B, and 45B.  Archaea were shown as A and the 

samples on Days 1, 3, 7, 15, 30, and 45 were shown as 1A, 3A, 7A, 

15A, and 30A. 

The main process of microbial gene sequencing included DNA 

extraction, polymerase chain reaction (PCR) amplification, library 

construction, and sequencing.  The DNA of samples was extracted 

by the FastDNA® SPIN Kit for soil (MP Biomedicals, Santa Ana, 

CA, USA) and amplicon sequencing was done through an Illumina 

MiSeq® PE300 platform (Allwegene Technology, China).  The 

amplified sequence used for microbe was in the V3-V4 

hypervariable region using the following universal primer sets: for 

bacteria, 338F, and 806R (5’-ACTCC TACGGGAGGCAGCA-3’ 

and 5’-GGACTACHVGGGTWTCTAAT-3’)[36]; for archaea, 344F 

and 806R (5’-ACGGGGYGCAGCAGGCGCGA-3’ and 

5’-GGACTACVSGGGTATCTAAT-3’)[37].  Raw fastq files 

obtained through the Miseq platform were demultiplexed, and 

quality-filtered using QIIME (version 1.17) with the following 

criteria as Cai et al.[38] reported.  After demultiplexing, the reads 

were assigned operational taxonomic units (OTUs) at 97% 

sequence similarity cutting off using UPARSE (version 7.1 

http://drive5.com/uparse/), and chimeric sequences were identified 

and removed using UCHIME.  The RDP classifier 

(http://rdp.cme.msu.edu/) was used to analyze the taxonomy of 

each 16S rRNA gene sequence against the silva 16S rRNA 

database using a confidence threshold of 70%[39] and obtain the 

species classification information corresponding to each OTU.  

The OTUs were classified using the alpha diversity metric.  The 

alpha diversity metrics were determined according to compared the 

smallest libraries for each sample.  The alpha diversity metrics 

included Chao 1, Shannon index, and phylogenetic diversity (i.e., 

Kingdom, phylum, class, order, family, genus, species)[40,41]. 

3  Results and discussion 

3.1  Electron microscopy (SEM) of each crop wastes 

The scanning electron microscopy (SEM) results showed the 

three kinds of straw microstructure had significantly different 

structures (Figure 1).  The structure of CS is tight, and the fiber 

bundles are arranged clearly and slightly convex (Figure 1a).  

However, the surface structure of WS is relatively dense and 

smooth with almost no convex point but there are bubbles, and the 

veins can be seen (Figure 1b), also the specific surface area is 

relatively small which is not conducive to the attachment of 

microorganisms.  The surface of RS is rough and more convex 

with a rod-like structure and an obvious fiber bundle skeleton 

structure (Figure 1c).  The structure of CS and RS is relatively 

loose, soft texture, and has strong ventilation compared with WS. 
 

   
a. CS b. WS c. RS 

Note: CS: Maize stover; WS: Wheat stalk; RS: Rice straw.  The same as below. 

Figure 1  Scanning electron microscope (SEM) with CS, WS, RS 

https://www.so.com/link?m=bfkhvCrYs5BkuDSNQQsbj/4d8h0DouljPZm9w851oJYQjwj5oycLdtIwtQI10P5lNslST1Ypmuu0Mw9rfJruAZzS2NSFNZy8sXZWA9aD5fHt/v0KXe+xPiXc5fPuJNH8SEXqvJhlH9742b2MXWTDzhdMu+JkY9FtVTHs+lT7Z5XLwr05WgnzQGJ3D1e8K77EAPpoSst08xVBAJuuVJSONhyAKQxyoQkQKHkalHT/+9PMY3VetsXdUvSp535GC8ozpMVxklg==
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3.2  Methane yields in anaerobic co-digestion reactors 

In co-digestion reactors of CM and CS, CSCMT3 had a long 

lag phase to produce methane (on Day 13) and reached the 

production peak (4.95 mL/g VS) on Day 15, then gradually 

decreased (Figure 2).  This was due to the higher CM ratio 

indicating high nitrogen content and inappropriate C/N ratio which 

contributed to the low activity of microorganisms[42].  However, 

CSCMT2 and CSCMT1 started on the first day and reached the 

highest daily methane yield (29.25 and 22.77 mL/g VS, 

respectively) on Day 7.  Also, their cumulative methane yields 

were higher than CMCST3 which were 6.68 and 5.24 times, 

respectively.  The daily methane yields in CM and WS 

co-digested reactors showed WSCMT3 and WSCMT2 generally 

increased and reached the peak of daily methane yields on the 8th 

day (14.38, 13.71 mL/g VS, respectively) (Figure 2b).  However, 

the daily methane yields of WSCMT1 were extremely unstable in 

the first 15 d, and this was due to the low CM ratio implying low 

nitrogen content and buffering capacity which was consistent with 

its lower pH and NH4
+-N content (Figure 3b).  In addition, the 

WSCMT1 had the largest cumulative methane yields, then 

WSCMT3 and WSCMT2 followed.  In co-digestion reactors of 

CM and RS, the daily methane yields for RSCMT3 and RSCMT2 

started on the first day and reached the daily methane peak on the 

7th day (18.66 and 17.14 mL/g VS, respectively) (Figure 2c).  On 

the contrary, the daily methane yields of RSCMT1 fluctuated 

greatly in the whole digestion duration with multiple daily production 

peaks which was consistent with its lower pH and NH4
+-N content 

(Figure 3c).  RSCMT3 had the highest cumulative methane yields, 

then followed by RSCMT2 and RSCMT1, besides, RSCMT2, and 

RSCMT1 had similar values.  In addition, a higher CM ratio could 

be beneficial to the stability of the reactor for co-digestion with RS.  

However, the appropriate ratio of CM helped to achieve the highest 

methane yields for co-digestion with CS and WS, respectively.  

Hence, the proper CM ratio was determined by the species of crop 

wastes used in the co-digestion reactor which may be due to their 

particular microstructure (Figure 1). 

 
a. CSCM b. WSCM c. RSCM 

Note: CM: Cow manure.  CS: Maize stover.  WS: Wheat stalk.  RS: Rice straw. 

Figure 2  Changes in daily and cumulative methane yields with CSCM, WSCM, and RSCM 
 

3.3  Dynamic characteristics of co-digestion reactor 

For the modified GM model, the fitting index (R2) values were 

above 99% (Table 2).  In co-digestion of CM with CS reactors, 

CSCMT2 had the largest maximum methane yield rate (Rmax) which 

was 4.65 and 1.06 times of CSCMT3 and CSCMT1, respectively.  

Meanwhile, CSCMT2 had the shortest lag phase (λ) and the λ of 

CSCMT3 and CSCMT1 were 3.16 and 1.07 times of CSCMT2, 

respectively.  For CM and WS co-digestion reactors, WSCMT1 

had the highest Rmax and the longest λ, then WSCMT2 and 

WSCMT3 followed.  These results showed that decreasing of 

adding the dosage of CM could increase the Rmax of the CM with 

WS co-digestion system, and also prolong the λ of the system.  In 

addition, in co-digestion reactor of CM and RS, RSCMT3 had the 

highest Rmax and shortest λ, then RSCMT2 and RSCMT1 followed 

indicating higher CM ratio was beneficial for the co-digestion 

system.  Generally, Rmax and λ of each treatment are consistent 

with daily and cumulative methane yields (Figure 2).  For the FO 

model, the fitting index (R2) values were above 90% (Table 2).  

The CSCMT2 had higher Kh of co-digestion reactors which was 

corresponding to the daily methane yields, and cumulative methane 

yields (Figure 2).  Also, this was consistent with the pH (Figure 3) 

and VFAs (Figure 4) during the digestion process.  Kh of CM 

co-digested with WS and RS reactors increased with the CM ratio 

and this was due to more easily degradable substance in CM[43,44] 

contributing to the intermediate macromolecular products.  Hence, 

the CM ratio affected the co-digestion process and the proper ratio 

of CM could increase Rmax and shorten the λ in the co-digestion 

reactor of CM and CS, also keeping the stability of reactors. 
 

Table 2  Parameters of the GM and FO model at different CM ratios in co-digestion reactors 

Experimental group 
Modified Gompertz model (GM) First-order (FO) model 

Ultimate specific methane yield/mL·g
−1

 VS P/mL Rmax/mL·d λ/d R
2
 Kh R

2
 

CM:CS 

T3(3:1) 40.89 41.12±0.11 3.70±0.08 12.98±0.17 0.99974 0.01773 0.90138 

T2(2:1) 272.99 264.02±0.25 17.21±0.27 4.11±0.20 0.99998 0.08108 0.96965 

T1(1:1) 214.47 214.16±0.11 16.19±0.17 4.38±0.12 0.99999 0.07969 0.96314 

CM:WS 

T3(3:1) 100.35 99.10±0.18 7.36±0.16 3.58±0.24 0.99984 0.12374 0.96285 

T2(2:1) 68.06 67.54±0.10 7.84±0.21 5.44±0.19 0.99984 0.11972 0.91423 

T1(1:1) 153.22 154.39±0.39 8.04±0.13 5.91±0.21 0.99992 0.03398 0.94347 

CM:RS 

T3(3:1) 167.73 146.41±0.32 9.22±0.12 3.46±0.32 0.99986 0.09513 0.97744 

T2(2:1) 137.25 137.34±0.24 9.17±0.21 3.63±0.27 0.99989 0.09131 0.96851 

T1(1:1) 132.61 133.24±0.27 9.07±0.23 4.67±0.27 0.99986 0.05082 0.92794 

Note: P is the maximum methane potential, mL/g VS; Rmax is the largest maximum methane yield rate; λ is the lag phase, d; Kh is the rate of the hydrolysis stage; T1 

means the treatment of CM to crop wastes ratios of 1:1; T2 means the treatment of CM to crop wastes ratios of 2:1; T3 means the treatment of CM to crop wastes ratios of 

3:1. 
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3.4  pH, VFAs, and NH4
+-N contents in anaerobic co-digestion 

reactors 

The pH values in all co-digestion reactors were in the range of 

6.0-7.8 indicating adding CM was beneficial to maintaining a 

suitable pH environment during the digestion process and this 

contributed to higher daily and cumulative methane yields[45,46] 

(Figure 3).  In addition, a higher CM ratio was corresponding to a 

more stable pH in a co-digestion reactor and this was due to lower 

CM ratios caused by the higher C/N ratio which implied the buffer 

capacity was worse than the higher CM ratio co-digestion reactor 

and the intermediate products such as VFAs was easy to 

accumulate (Figure 4)[47].  Hence, higher CM ratios could be 

beneficial for the stability of pH in the co-digestion process. 

In CM and CS co-digestion reactors, the VFAs content of 

CSCMT3 was higher in the first 7 d of the digestion (3.985 g/L) 

and then decreased rapidly (Figure 4a), which was consistent with 

the trend of NH4
+-N concentration and lower daily and cumulative 

methane yields (Figure 3a).  CSCMT2 and CSCMT1 have similar 

changes in VFAs concentration and were consistent with changes 

in pH (Figure 3).  In addition, the VFA contents had similar trends 

which showed higher CM ratios corresponding to higher VFAs 

contents when co-digested with WS and RS (Figure 4b and 4c) and 

this was due to the higher CM ratio implying more easy degradation 

matters which accumulated easily as to untimely consumption.  

Acetic acid was the main component of VFAs (accounting for more 

than 50%) in the first 7 d and was mostly consumed on the 10th 

day during the digestion process, and this result is in agreement 

with the findings of Chi et al.[48] and Goswami et al.[49]  In 

addition, propionic acid accounted for a large proportion of VFAs 

especially, in the first 7 d exceeding 1 g/L, but it has no obvious 

effect on the anaerobic reaction system[50-52].  All the VFA 

concentrations in each reactor did not reach the inhibition 

concentration of VFA (all below 13 g/L)[53] which indicated there 

was no VFA inhibition in the digestion process. 

 
a. CSCM b. WSCM c. RSCM 

 

Figure 3  Changes in pH value of CSCM, WSCM and RSCM 

 
a. CSCM 

 
b. WSCM 
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c. RSCM 

Figure 4  Changes in VFAs and NH4
+-N contents with CSCM, WSCM, and RSCM 

 

The NH4
+-N content trend (Figure 4) was consistent with the 

pH (Figure 3) indicating reactors had enough buffering capacity to 

maintain the acid-base balance during the anaerobic digestion 

process.  In addition, the NH4
+-N contents in the co-digestion of 

CM with CS and RS had a relatively stable NH4
+-N content 

maintained at about 1100 mg/L (Figures 4a and 4c).  However, 

the co-digestion of CM with WS had large fluctuations of NH4
+-N 

concentrations during 7-30th days which caused insufficient 

nutrients and inadequate buffering capacity resulting in an unstable 

system (Figure 4b).  This was the main reason why the daily 

methane production of the co-digestion of CM with WS fluctuated 

during this period.  The NH4
+-N contents in all reactors were all 

below 3000 mg/L which had no inhibition of methanogens[54-56]. 

3.5  Diversity analysis of microbial community 

For all the reactors, the dominant bacteria in the early stage 

(0-7th day) of the co-digestion process were Petrimonas, and its 

relative abundance gradually decreased with the progress of the 

digestion process (Figure 5a).  This was because a higher CM 

ratio implied more easily degradable organic matters and this 

contributed to the growth of Petrimonas which mainly decomposes 

simple sugars to produce acetic acid, CO2, and hydrogen[57], then 

the relative abundance gradually decreased with the consumption 

of these degradable substances.  These were consistent with the 

daily and cumulative methane yields (Figure 2).  Also, this was 

consistent with the pH and VFAs changing trend (Figures 3 and 4).  

With the progress of the digestion process, the main bacteria 

evolved into Longilinea and Ruminofilibacter on the 15th-45th 

days, and their relative abundance increased (Figure 5a).  Both of 

them can effectively hydrolyze macromolecular refractory organics 

as Longilinea can produce organic acids by decomposing 

macromolecular organics and Ruminofilibacter can produce 

hemicellulase[58,59].  Hence, these bacterium dominated on the 

15th-45th days.  In addition, it was noted that the relative 

abundance of Caldicoprobacter in WSCMT1 was lower than in the 

other reactors during digesting process, which was consistent with 

the lower CM ratio as Caldicoprobacter is the main bacteria for 

protein hydrolysis[60].  In addition, the relative abundance of 

Hydrogenophaga in WSCMT1 increased from 0.11% to 4.54% on 

the 15th-30th days of digestion and further increased to 10.35% on 

the 45th day of digestion, while the relative abundance of 

Hydrogenophaga in CSCMT2, RSCMT3 was lower than 0.3% 

during digestion.  Since Hydrogenophaga is more sensitive to 

hydrogen, a large increase in its relative abundance indicated a 

large increase in hydrogen production in the reactor.  Hence, 

every digestion stages had different microbial compositions as the 

bacteria in the early stage mainly consumed carbohydrate, fat, and 

protein from cow manure, and it degraded the refractory organic 

matter from straw in the middle and late stage which was consistent 

with the daily methane yield having several peaks in whole 

digestion process (Figure 2).  Though the evolution of the main 

bacteria community was relatively similar which were mainly 

acid-producing bacteria, the relative abundance of each reactor was 

different and there were special bacteria in WSCMT1, and this 

contributed to the final difference digestion process. 

The dominant archaea were different in various periods, i.e., 

the main archaea in the 1st-7th days were Methanosaeta, and then 

Methanosarcina increased and transformed into the main archaea.  

This was consistent with the changes in pH, VFAs, and NH4
+-N 

concentration (Figure 3 and 4) as Methanosaeta can decompose 

acetic acid to form methane which is more sensitive to the 

environment than Methanosarcina, and the relative abundance 

gradually decreased from Day 3 to Day 7 with the increase of 

acetic acid concentration[61].  The relative abundance of 

Methanosarcina increased with the progress of digestion as it is the 

only methanogenic microorganism that can utilize all known 

methanogenic pathways, and it is relatively insensitive to the 

environment and can survive in higher concentrations of VFAs, 

NH4
+-N, and hydrogen sulfide, and its number increases with the 

increase of acetic acid concentration[62,63].  In the co-digestion of 

cow manure and different straws process, the methane production 

was mainly produced by the acetic acid nutrition pathway in the 

first 15 d, and hydrogen nutrition pathway and methyl nutrition 

pathway after 15 d (Figure 2) according to the variation trend of 

relative abundance of Methanosaeta and Methanosarcina.  In 

addition, Methanobacterium also existed in each sample, which can 

produce methane through interspecies hydrogen transfer[64].  

Therefore, combined with methane production (Figure 2), 

Methanosaeta and Methanosarcina were the main methanogens, 

among which Methanosaeta had a higher methane production  

rate. 

For bacteria, Redundancy Analysis (RDA) analyzed results 

showed Petrimonas, Sedimentibacter, and Proteiniphilum were 

highly positively correlated with the VFAs concentration and the 

three bacteria were close to the samples of the first 15 d (Figure 5c).  

This showed that they promoted the accumulation of VFAs in the 

hydrolytic acidification period, also this was consistent with the 
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VFAs contents (Figure 4).  Longilinea, Ruminofilibacter, and 

Ruminiclostridium_1 contributed to the decomposition of organic 

matter in the middle and late stages (the 15th-45th days) of 

digestion.  Caldicoprobacter was closer to the samples of 

CSCMT2 and RSCMT3 on the 15th-45th days, which showed a 

positive correlation with NH4
+-N content and a negative correlation 

with VFAs content indicating Caldicoprobacter had a certain 

contribution to the accumulation of NH4
+-N and the recovery of pH 

value in CSCMT2, RSCMT3 systems which were consistent with 

the NH4
+-N content was more stable than in WSCMT2 (Figure 4).  

For archaea, RDA results showed that Methanosaeta and 

Methanobacterium promoted the consumption of acetic acid in 

CSCMT2 (Figure 5d) and propionic acid concentration was the 

most important environmental factor.  Methanosarcina and 

Methanospirillum were the main archaea at the peak period of gas 

production in WSCMT3.  All archaea were at right angles or 

obtuse angles with pH indicating that methanogens were negatively 

correlated with pH, that is, acidic pH would greatly inhibit the 

activity of methanogens and this also could find in methane 

production (Figure 2). 

 
a. Bacteria 

 
b. Archaea 
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c. RDA analysis of bacteria  d. RDA analysis of archaea 

 

Note: The red arrow means the environmental factors affecting the digestion process and the blue arrow means the main microbe in the reactors.  The length of 

the arrow indicates the relevance between the environmental factors and microbial community. 

Figure 5  Characteristics of microbes at genus level with bacteria, archaea, and RDA analysis of bacteria and archaea 
 

4  Conclusions 

Cow manure (CM) ratio affected the evolution of microbial 

community structure in co-digestion of different crop wastes which 

finally contributed to the different digestion processes.  Hence, 

suitable CM ratio varied with the species of crop wastes as their 

special microstructure in terms of ensuring the normal start-up of 

the digestion system and improving methane production.  The 

dominant bacteria was Petrimonas at the early stage of the 

co-digestion and then conversed with Longilinea, Ruminofilibacter 

until the end of the duration.  To archaea, Methanosaeta 

accounted for a large proportion at the initial stage and then 

Methanosarcina became the dominant archaea.  On the whole, the 

evolution of microbial community structure was similar in the 

CSCMT2 and CRCMT3.  In addition, it was worth noting that the 

abundance of Caldicoprobacter in the WSCMT1 was lower than 

that in the other two reactors, which was one of the important 

reasons for the instability of the reactor.  Hence, for different crop 

wastes, a suitable ratio co-digested with CM could provide a stable 

digestion process and higher methane yields and this had an 

important guiding sense for biogas plants. 
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