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Trunk detection based on laser radar and vision data fusion 
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Abstract: Tree trunks detection and their location information are needed to perform effective production and management in 
forestry and fruit farming.  A novel algorithm based on data fusion with a vision camera and a 2D laser scanner was developed 
to detect tree trunks accurately.  The transformation was built from a laser coordinate system to an image coordinate system, 
and the model of a rectangle calibration plate with two inward concave regions was established to implement data alignment 
between two sensors data.  Then, data fusion and decision with Dempster-Shafer theory were achieved through integration of 
decision level after designing and determining basic probability assignments of regions of interesting (RoIs) for laser and vision 
data respectively.  Tree trunk width was calculated by using laser data to determine basic probability assignments of RoIs of 
laser data.  And a stripping segmentation algorithm was presented to determine basic probability assignments of RoIs of vision 
data, by calculating the matching level of RoIs like tree trunks.  A robot platform was used to acquire data from sensors and to 
perform the developed tree trunk detection algorithm.  Combined calibration tests were conducted to calculate a conversion 
matrix transforming from the laser coordinate system to the image coordinate system, and then field experiments were carried 
out in a real pear orchard under sunny and cloudy conditions, with trunk width measurement of 120 trees and 40 images 
processed by the presented stripping segmentation algorithm.  Results showed the algorithm was successful to detect tree 
trunks and data fusion improved the ability for tree trunk detection.  This algorithm could provide a new method for tree trunk 
detection and accurate production and management in orchards. 
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1  Introduction  

Tree trunk detection and their location information are needed 
to perform effective production and management in forestry and 
fruit farming, such as fertilization, irrigation, weeding, spraying, 
pruning and harvesting operations[1,2].  At present, laser radar and 
machine vision have been used as main device for detecting tree 
trunks[3-6].  Liang et al.[7] distinguished different data classes using 
laser point cloud data, and then identify the class of data points of 
tree trunk through the detection of linear points in the vertical 
direction.  Lehtomäki et al.[8] classified the LiDAR points on the 
basis of cylinder feature to detect tree trunk and pole-like objects.  
Rahman and Gorte[9] proposed tree filtering approach to separate 
dominant tree and undergrowth vegetation on the fact that a 
dominant tree has distinct parts in the histogram.  Bargoti et al.[10] 
presented a trunk localization pipeline for identification of 
individual trees in an apple orchard using a Hough Transform and a 
Hidden Semi-Markov Model.  Hamner et al.[11] tendered a 2D 
laser scanner based method to identify rows of trees by detect 
trunks and/or tree crown, and a Hough Transform was used to 
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extract feature points and rows of tree for navigation of an 
agricultural vehicle.  Guivant et al.[12] detected tree trunks by 
using a two-dimensional laser scanner, and the detected tree trunk 
was regarded as landmarks to perform simultaneous localization 
and mapping algorithm.  Also, 3D laser scanners have been 
applied to detect trees.  Zhang et al.[13] proposed a method to 
extract information of tree rows and trunks from 3D LiDAR point 
cloud data for an autonomous vehicle in orchards.  However, 3D 
laser scanners have more expensive and more intensive 
computation than 2D laser scanners.  

Also, vision sensors can be used to extract features such as 
color, shape, texture and edge of trees.  Ali et al.[14] introduced a 
method for autonomous navigation of vehicles in forest, which is 
based on image segmentation to classify tree trunks by integration 
techniques of color and texture.  He et al.[15] proposed machine 
vision based method to detect the intersection of main trunks and 
the ground for calculation of navigation path of a harvesting robot 
in orchards.  The authors pointed out that this algorithm is 
affected significantly by weeds in orchards.  Morgenroth and 
Gomez[16] applied a 3D image analysis technique with a SLR 
camera to assessment of tree structure such as tree height and stem 
diameter. 

In fact, laser radar can be used to directly measure geometric 
information around the environment, which embodies geometric 
attributes of the environment.  But, machine vision can be used to 
apperceive the energy emitted or reflected from objects in a 
surrounding environment, which embodies color attributes of the 
environment.  Compared to machine vision, laser radar has a low 
angle resolution and small amount of data, for only one scan line or 
a few scan lines can be obtained at a time without texture 
information of objects in the environment.  Therefore, the 
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combination of color information from machine vision and 
geometric information from laser radar can proved a better 
description of surrounding environment, thus it can perceive trees 
effectively in orchards.  Meanwhile the combination of machine 
vision and laser radar might be reasonable for the research on 
production and management in orchards, considering the complex 
environment and low costs.   

Cheein et al.[17] distinguished single trunks in olive orchard by 
the combination of a visual camera and a laser scanner.  They 
detected tree trunks from images firstly, and obtained the angle of 
tree trunks related to a mobile robot, then the tree trunks were 
validated in the adjacent area of this angle by using the laser 
scanner.  Also, Shala et al.[18] presented a tree trunk detection 
algorithm using a camera and laser scanner data to discriminates 
between trees and non-tree objects.  The laser scanner was used to 
detect the edge points and determine the width of the tree trunks 
and non-tree objects, while the camera images were used to verify 
the color and the parallel edges of the tree trunks and non-tree 
objects. 

In fact, data fusion between a laser scanner and a vision 
camera exist certain difficulties due to the different view of field, 
resolution, frequency and data format.  Meanwhile, there are some 
uncertainties such as false detection and missing detection with 
whether laser radar or machine vision, and data redundancy due to 
the detection of the same tree trunk by the two sensors.  Therefore, 
the objective of this work is to develop a novel algorithm based on 
decision level fusion of a vision camera and a 2D laser scanner, 
with Dempster-Shafer theory to detect tree trunks accurately in 
forestry and fruit farming.  

2  Materials and methods 

2.1  Principle of data fusion of laser radar and machine vision 
Data fusion can be divided into pixel level fusion, feature level 

fusion and decision level fusion.  Due to different view of field, 
resolution, frequency and data format of a laser radar and a vision 
camera, there are certain difficulties in data fusion of pixel level 
and feature level.  But, decision level fusion is regarded as a high 
level fusion, where decisions can be made respectively in light of 
their own data of each sensor firstly, and then data fusion is 
processed in a fusion center.  The decision level fusion has small 
dependence on sensors, i.e. it does not require sensors with the 
same type, and the fusion center has low processing cost.  
Therefore, the advantages of decision level fusion can solve many 
problems about dissimilar sensors fusion. 

Considering some uncertainties, such as false detection and 
missing detection with whether laser radar or machine vision, and 
data redundancy due to the detection of the same tree trunk by the 
two sensors, Dempster-Shafer theory was chosen to deal with those 
uncertainties and redundancy.  The fusion process is shown in 
Figure 1.  Firstly, some preprocessing works were implemented, 
such as single calibration of laser radar and vision camera, 
reduction of measurement noises of laser data and preprocessing of 
vision data.  Then, data alignment was implemented by the 
combined calibration from the laser coordinate system to the image 
coordinate system.  Subsequently, basic probability assignment 
functions with a frame of discernment were designed rationally and 
calculated for regions of interesting (RoIs) of laser data and vision 
data respectively.  At last, data fusion was conducted in light of 
evidence combination rules and decision should be made in light of 
decision rules of Dempster-Shafer theory. 

 
Figure 1  Decision level fusion based on Dempster-Shafer theory 

 

2.2  Preprocessing of sensors data 
Several preparations were carried out before data fusion.  

First of all, time synchronization was conducted to acquire for the 
two sensors by using the same computer.  Then, the two sensors 
were calibrated respectively.  Here camera calibration was 
achieved using the Matlab Camera Calibration Toolbox, and laser 
calibration was carried out to detect the installed error and the 
measurement error[19].  Then, the raw data from the two sensors 
were preprocessed.  

In theory, the precision of laser radar is high, but a lot of noises 
usually are contained in laser data due to its systematic errors, 
reflection or transmission of some measured objects, mixed pixel 
and ambient light, which reduce the measure precision of laser 
radar.  Here, median filter with three neighborhoods was adopted 
to process the data to reduce the effect of measurement noises. 

A 2D linear interpolation method was used to preprocess 
images from the vision sensor to reduce the range of data hole.  
The method is to search four closest pixels around an interpolating 
pixel point.  Then, the gray value of the interpolating pixel point 
was obtained by weighed average of the four pixels gray values, 
where the reciprocal of distance was set as the weight.  This 
method is simple with fast speed processing. 
2.3  Data alignment between sensors data 

Data alignment between laser and vision sensors was carried 
out to implement data fusion, because they have different data 
representation and different resolution.  Here, a combined 
calibration based method was used to solve the problem of data 
alignment between the two sensors. 

For a camera sensor, the 3D world coordinates are transformed 
to the 2D image coordinates, and there is only one corresponding 
pixel in an image for one point in the 3D space.  Also, each data 
point from a laser sensor has a unique position in the 3D world 
coordinate system.  Thus for one laser data point, there is only one 
corresponding point in the 3D world coordinate system, and also 
there is only one corresponding point in the image.  Therefore, the 
calibration can be implemented from the laser coordinate system to 
the image coordinate system, considering the fact that it is plane 
scanning for laser radar and its scanning points are located on the 
calibration plane.   
2.3.1  Single line laser radar model 

The 3D coordinates of any radar data point P can be expressed 
by the following Equation (1) in the world coordinate system 
(Figure 2).  
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where, [XP,YP,ZP,1]T is the homogeneous coordinate of the point P 
in the Cartesian coordinate system; [xP,yP,1]T is the homogeneous 
coordinate of the point P in the laser coordinate system; M is the 
external parameter matrix of laser radar, and it will be determined 
after the laser sensor is installed.  
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Figure 2  2D laser sensor model 

 

2.3.2  Camera model 
For a camera sensor, the 3D world coordinates are transformed 

to the 2D image coordinates, as shown in Figure 3.  Any point P= 
[XP,YP,ZP]T in the world coordinate system has the only projection 
point p=[u,v]T in the 2D image plane W, and O is the center of 
projection. 

 
Figure 3  Camera model 

 

This perspective projection can be expressed as:  
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where, [u,v,1]T is the homogeneous coordinate of the projection 
point p in the image plane W; [XP,YP,ZP,1]T is the homogeneous 
coordinate of the point P in world coordinate system; λ is a scaling 
factor; Q is a 3×4 perspective projection matrix, which is 
determined by the internal and external parameters of the camera.   
2.3.3  Direct calibration method of laser radar and camera 

According to Equations (1) and (2), the transformation is 
obtained from the laser coordinate system to the image coordinates 
system as Equation (3), where G is a 3×3 conversion matrix. 
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             (3) 

The traditional solution to the conversion matrix G is to 
implement the two calibration process respectively to calculate the 
rotation matrix M and the perspective projection matrix Q.  But 
the disadvantage of this method is that every calibration will 
introduce error and thus it will result in a greater error for the 
calculation of the conversion matrix G due to error accumulation.   

To find the image pixel points corresponding to the laser data 
points, a rectangle calibration plate is adopted as shown in Figure 4, 
which is referred to the literature [20].  The plate has two inward 
concave regions (Figure 4a), one is on the left with isosceles 
trapezoid, and another is on the right with rectangular.  And 
positions of all vertices of the two regions can be measured 
accurately in the plate coordinate system.  The plate coordinate 
system OBxByB is connected to the plate, the origin point of the 
coordinate system is set on the bottom left corner of the isosceles 
trapezoid, the xB axis is horizontal to the right, and the axis yB is 
vertical to the up.  Figure 4b is the partial enlargement of the 

calibration plate with scaling marks, and the scaling marks can be 
positioned with visual interpretation.   

There are certain differences for the laser scanning data 
reflected from the inward concave regions and the flat part on the 
plate.  According to these differences and the geometric 
relationship, the coordinates of some special laser scanning points 
in the calibration plate can be calculated, and then the 
corresponding positions in the image found according to the 
coordinates of the special scanning points in the plate coordinate 
system.   

 
a. Calibration plate                            

 
b. Its partial enlargement 

Figure 4  Calibration plate and its partial enlargement 
 

2.3.4  Combined calibration algorithm of laser and image 
The model of the calibration plate was established as shown in 

Figure 5, where the sold lines represent the edge of the inward 
concave regions, and the dotted line indicates the position of the 
scanning line.  The three intersection points A, B and C between 
the laser scanning line and the two waists of the trapezoid and the 
left edge of the rectangular are regarded as the special points.  
Thus, the coordinates of these special points are calculated 
respectively in the laser coordinate system and the image 
coordinate system.  Then, the conversion matrix G of Equation (3) 
was calculated in light of the obtained coordinates of these special 
points above.  

 
Figure 5  Plate model 

 

From Figure 5, the linear equations of two waists of the 
isosceles trapezoid were y=4x and y=-4x+4 in the calibration plate.  
And the coordinates of A, B and C points can be expressed as: 

A: (xA, 4xA)    B: (xB,-4xB+4)    C: (1.4, yC) 
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The length of line segment of AB and BC were lAB and lBC 
respectively, and the following equations can be obtained 
according to the distance equation between two points.  

2 2 2( ) (4 4 4)A B A B ABx x x x l− + + − =            (4) 
2 2 2(1.4 ) ( 4 4)B C B BCx y x l− + + − =            (5) 

And the following equation can be obtained according to the 
collinear condition of A, B and C points.  

4 4 4 4 4
1.4

A B C B

A B B

x x y x
x x x
+ − + −

=
− −

             (6) 

Thus, the coordinates of A, B and C points can be calculated 
according to Equations (4)-(6).  Then, the coordinates of the three 
special points in the image plane are calculated in light of the exact 
coordinate scales in the calibration plate, thus to realize the 
matching of laser data points and image pixels.   

A set of calibration data {(x1,y1,u1,v1), (x2,y2,u2,v2), …, 
(xn,yn,un,vn)} can be achieved by changing the position of the 
calibration plate in front of an agricultural vehicle with a camera 
and a laser radar, as the agricultural vehicle is kept stationary.  

Set a transition matrix G: 
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Substitute G in Equation (3), then we have: 
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             (8) 

Eliminate λ, then we have:  
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    (9) 

By Equation (9), each set of laser-image data pairs can 
determine two equations, so at least 5 sets of data pairs are needed 
to solve the matrix G.  Here the value of g11 is set to 1, and 
Equation (9) is converted to:  

12 13 31 32 33

21 22 23 31 32 33

( )
( ) 0

P P P P

P P P P

g y g u g x g y g x
g x g y g v g x g y g

⋅ + − ⋅ + ⋅ + = −⎧
⎨ ⋅ + ⋅ + − ⋅ + ⋅ + =⎩

 (10) 

Usually, n>5 is selected to reduce the calibration error, and 
then 2n equations can be obtained as n sets of data pairs are 
substituted to Equation (11).  Set X=[g12, g13, g21, g22, g23, g31, g32, 
g33]T, the 2n equations can be rewritten as: 
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The matrix G can be calculated when the equations above are 
solved by using the least square method.  
2.4  Data fusion and decision based on Dempster-Shafer theory 
2.4.1  Concept of basic probability assignments 

For tree detection in an orchard environment, a frame of 
discernment is defined as Ω={T, NT}, where T refers to the tree 
trunk, and NT indicates not the tree trunk.  So, a nonempty set of 
the frame Ω includes three subsets of {T}, {NT} and {T, NT}.  A 
function m:2Ω→[0,1] is called a basic probability assignment if it 
satisfies m(Φ)=0, where Φ is empty set, and  

( ) 1
A Ω

m A
⊆

=∑  

The quantity m(A) is defined as A’s basic probability number.  
It represents the strength of some evidence. 
2.4.2  Basic probability assignments of laser data 

The information of trunk width is chosen as evidence to design 
the basic probability assignments of laser data preprocessed by 
median filter.  Considering the fact that a tree trunk is 
approximately cylindrical and the distance from radar to the tree 
trunk is so farther than the diameter of the tree trunk, the polar 
radius values of all laser data points corresponding to the tree trunk 
are very close, and the edge of the tree trunk can be detected in 
light of the change rate of polar radius, as shown in Figure 6, where 
the point OR represents the original point of laser radar, the lines 
ORA and ORB represents the polar radius values of the edge of tree 
trunk, θ is intersection angle of the lines ORA and ORB, AB 
represents the width of the trunks.  According to the relative 
triangle Equations, we have 

2 2 2 2 cosR R R RAB O A O B O A O B θ= + − ⋅ ⋅ ⋅        (12) 
According to Equations (12), the trunks width can be 

calculated.  Here, the calculated width of the tree trunk should be 
smaller than the tree trunk diameter, but they are very close. 

 
Figure 6  Calculation of width of tree trunk 

 

Assuming that the limit of the trunk width is W=[wmin, wmax], 
where unit is millimeter, and when the diameter of one 
measurement is di, the basic probability assignment of laser data 
points indicating the tree trunk is:  
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where, k1 is a constant and general close to 1; m1(T) is the belief 
level that the data points represent the tree trunk, the greater value 
of m1(T) means that the data points represent the tree trunk with the 
greater likelihood; Δw is the measurement error of the tree trunk.  
Also, assuming m1(Ω)=0, thus m1(NT)=1-m1(T), where m1 (NT) 
means the likelihood of laser data points is not a tree trunk.  
2.4.3  Basic probability assignments of vision data 

After preprocessing with a 2D linear interpolation for data hole, 
the tree image includes three parts, i.e., the regions of green plants 
such as tree leaves and weeds, tree trunks and big branches, and 
background region mainly composed of soil.  Here a stripping 
segmentation algorithm is proposed to strip out the regions not 
belonging to tree trunk regions part by part, as shown in Figure 7.  
The algorithm was detailed with examples in Section 3.2.2. 

Assuming that the matching level of the corresponding vision 
points of the tree trunk is α, α∈[0,1], which value is determined by 
calculating width and height of consecutive pixel points (possible 
tree trunk) in the stripped image after the feature extraction of tree 
trunks.  The higher the matching level α is, the higher the 
similarity level of tree trunks.  Here, we define  

2 2( )            0 1m T k α α= ⋅ ≤ ≤             (14) 
and 
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where, k2 is a constant and general close to 1.  Thus, m2(NT) =1 – 
m2(T) – m2(Ω), which means the likelihood that the vision points are 
not tree trunks.   

 
Figure 7  Algorithm of stripping segmentation 

 

2.4.4  Data fusion and decision 
For a frame of discernment Ω, m(*) indicates the basic 

probability assignment using the evidence combination of 
Dempster-Shafer theory[21], as shown in Equation (16).   
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After the evidence combination, decision will be made based 
on the basic probability assignment[21], then we have:  

1

2

( ) ( )
(Ω)
( ) (Ω)

m T m NT ε
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m T m
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              (17) 

where, T is the decision result; ε1 and ε2 are the preset threshold 
values.   

In Equation (17), the first inequality indicates that it should 
keep sufficiently large difference for each evidence to support all 
the different propositions, otherwise, it is thought that this evidence 
does not inclined to support certain proposition.  The second 
inequality means the uncertainty level for the objective proposition, 
and when the uncertainty level of the evidence is very large, it is 
not sufficient for the evidence of sensors to classify targets.  The 
third inequality represents that it cannot classify when the 
knowledge of a target is poorly little.   

3  Experiments and analysis 

3.1  Combined calibration tests of laser sensor and vision 
camera 

The tests were conducted in an agricultural robot, where a 
SICK LMS 192 laser scanner with a scanning distance of 8 meter, 
and a scanning angle of 180º and an angular resolution of 0.5º, was 
fixed on the front of the robot body with tiny downward sloping; a 
web camera of PK-910H with 1280×720 pixels resolution and 
about 60° angle of view, was fixed with a downward angle of 15°; 
A laptop computer TL-N12 was used to acquire and process sensor 
information, as shown in Figure 8.  The calibration plate was 
vertically placed in the robot front, and 7 sets of laser-image data 
pairs were obtained with 7 different location of the plate, but it 
should be always guaranteed that the scanning line of the laser 
radar sweeps the two waists of the isosceles trapezoid and the 
rectangular edge in the plate and the plate must be in the camera 
view.  

 
Figure 8  Experiment robot 

 

According to one set of laser-image data pairs, the coordinates 
of the special points of A, B and C (Figure 5) were determined in 
the laser coordinate system, and the length of the line segment AB 
and BC were calculated.  Then, these points were located in the 
image and their coordinates were obtained in the image coordinate 
system.  Thus the matching of laser data and image pixels were 
implemented.  The calculation process above was repeated to 
solve the special points of the calibration plate at different positions 
in front of the agricultural robot, and thus 14 sets of calibration data 
was obtained as followed (the units are m and pixel respectively): 

M ={(0.1956, 2.235, 365, 361), (0.4234, 1.91, 451, 341),…, 
(–0.7788, 2.199, 68, 357)}. 

There are four elements in one subset, where the first two 
elements are the coordinates in the laser coordinate system, and the 
last two elements are the coordinates in the image coordinate system. 

According to Equation (11), the conversion matrix G was 
calculated: 

1            0.5230     0.1437
0.0094   0.2385       0.4905
0.0002   0.0016     0.0002

G
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 

The laser data points were projected onto the image according 
to the conversion matrix G, as shown in Figure 9.  The red points 
indicate the position of the scanning points of the laser in the image 
coordinate system after calibrating. 

 

 
Figure 9  Results of the linear fitting 

 

3.2  Field experiments 
3.2.1  Experiments design 

Field experiments were conducted in a pear orchard at the 
horticultural experiment field of Nanjing Agricultural University, 
on the same platform mentioned above (Figure 8).  The robot was 
located on different position along pear trees rows, and the 
computer acquired sensors data in time.  The 40 images and laser 
data were acquired from 9:00 am to 10:00 am and form 2:00 pm to 
3:00 pm in sunny day and cloud day respectively.  And the 
measurement for tree trunk width was conducted for 120 trees by 
using laser sensor.  Then tree trunks were detected according to 
data pairs from laser radar and camera.  
3.2.2  Image processing and matching level calculation 

According to the stripping segmentation algorithm (Figure 7),  
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tree trunks were stripped out, as shown in Figure 10.  Considering 
that there are almost green canopy of trees on the upper of an 
image (1280×720 pixels, Figure 10a), we selected local region of 
the image (1280×540 pixels, Figure 10b), which can accelerate the 
speed of image processing.  After preprocessing data hole and 
analyzing the 40 images, we found the RGB values of trunks are all 
less than 200, the values of blue color are almost less than the 
values of green color and one of the RGB values of soil 
background is always less than 50, so we segmented the local 

region image and obtained a gray image, as shown in Figure 10c.  
After binaryzing, a binaryzation image was shown in Figure 10d.  
Then, morphological operations such as “fill, open and close” were 
conducted for further image processing, as shown in Figure 10e, 
where the remaining RoIs were labeled.  At last, feature extraction 
of tree trunks was performed in light of the fact that the height of 
tree trunks is bigger than the width in images, so we obtained 
Figure 10f where the RoIs with labels of 1, 4, 5, 8 and 9 were 
remained.  

 

  
a. Raw image b. Local image c. Gray image 

  
d. Binarized image e. Image after morphological operations f. Extraction with labels 

 

Figure 10  Image processing 
 

The following equation was applied to calculate the matching 
level α of tree trunks: 

α=min{1, k3·AB/ABB}               (18) 
where, AB indicates the area of a labeled region; ABB indicates the 
area of the bounding box for every labeled region, which is the 
smallest rectangle containing the labeled region, as shown in Figure 
10f; and k3 is a constant, here set k3=2.  Therefore, α values of 
matching level are 0.64, 0.36, 0.66, 1 and 0.52 for the labeled 
regions 1, 4, 5, 8 and 9 in Figure 10f respectively.  Here, the 
matching level α of the labeled region 5 is larger than those of the 
labeled regions 1, 4 and 9 corresponding to tree trunks.  
3.2.3  Tree trunk width measurement 

According to laser data like Figure 11, which corresponds to 
the scene of Figure 10a, the trunk width was calculated by 
Equations (12).  The measured values of trunk width of 120 trees 
were compared to true values of tree trunk width, as shown in 
Figures 12 and 13.  The values of trunk width are mainly at 
130-185 mm (Figure 13a), but the measured values are all not more 
than the true values, which error rates are limited at 6%-16.7%, and 
mainly at 7% and 10% (Figure 13b).  For Figure 11, the trunk 
width values for labels of A, B, C and D are 0.1836, 0.1696, 0.1735 
and 0.1806, respectively.  It should be noted that we only 
considered laser data points from 60º to 120º due to about 60º 
angles of view of the web camera used here. 

 
Figure 11  Laser data 

 
Figure 12  Width of tree trunks and error rate of trunk width 

 

3.2.4  Data fusion and decision 
The laser data points were projected onto the tree image 

according to the conversion matrix G in Figure 14.  The red points 
indicate the position of the scanning points of the laser in the image 
coordinate system after calibrating. 

 
a. Distribution of trunk width           b. Distribution of error rate 

Figure 13  Distribution of trunk width and error rate 
 

 
Figure 14  Projection of laser data points onto the tree image 

 

The basic probability assignments of RoIs of laser data were 
calculated by Equation (13).  Here, the basic probability 
assignments for labels of A, B, C and D were all 0.9 in Figure 11 at 
k1=0.9.  Also, the basic probability assignments of RoIs of vision 
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data were calculated by Equation (14).  And the basic probability 
assignments of the labeled regions of 1, 4, 5, 8 and 9 were 0.576, 
0.324, 0.594, 0.9 and 0.468 in Figure 10f respectively at k2=0.9.  
Table 1 and Table 2 showed the basic probability assignments of 
the label A, B, C, D and 1, 4, 5, 8, 9 for a frame of discernment Ω 
including {T}, {NT} and {T, NT}.  From data pairs of laser sensor 
and vision sensor, the label A, B, C and D in Figure 11 corresponds 
to the label 9, 8, 4 and 1 in Figure 10f, respectively, but no data 
from laser sensor corresponds to the label 5.  Therefore, we 
defined the corresponding basic probability assignment as m(T)=0, 
and m(NT)=1.  

Evidence combination was conducted according to Equation 
(16), the results is shown in Table 3. 

 

Table 1  Basic probability assignments for vision data 

 1 4 5 8 9 

m2 (T) 0.576 0.324 0.594 0.9 0.468 

m2 (NT) 0.324 0.576 0.306 0.1 0.432 

m2 (Ω) 0.1 0.1 0.1 0 0.1 
 

Table 2  Basic probability assignments for laser data 

 A B C D 

m1(T) 0.9 0.9 0.9 0.9 

m1(NT) 0.1 0.1 0.1 0.1 

m1 (Ω) 0 0 0 0 
 

Table 3  Basic probability assignments after evidence 
combination 

 1 4 5 8 9 

m1 ⊕ m2(T) 0.935 0.850 0 0.988 0.906 
m1 ⊕ m2 (NT) 0.065 0.150 1 0.012 0.094 
m1 ⊕ m2 (Ω) 0 0 0 0 0 

     

Assuming ε1=ε2=0.1, final decision results are that targets of 1, 
4, 8 and 9 are tree trunks according to Equation (17), but target 5 is 
not, although it has high matching level like tree trunk.  

4  Conclusions 

A novel algorithm based on data fusion of a vision camera and 
a 2D laser scanner was developed to detect tree trunks accurately in 
forestry and fruit farming.  The data fusion is achieved through 
the integration of decision level with Dempster-Shafer theory.  A 
calibration plate with two inward concave regions was used to 
implement data alignment between two sensors data.  Tree trunk 
width measurement by laser radar and image processing by a 
stripping segmentation algorithm were performed to determine 
basic probability assignments of RoIs for two sensor data 
respectively.  

A robot platform was used to acquire data from sensors and to 
perform the presented tree trunk detection algorithm.  
Experiments were conducted in a real pear orchard under sunny 
and cloudy conditions.  Results showed the algorithm was 
successful to detect tree trunks and data fusion improved tree trunk 
detection ability.  This algorithm can provide a new method for 
tree trunk detection and accurate production and management in 
orchards. 
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